Copied to
clipboard

G = C22⋊C4×Dic5order 320 = 26·5

Direct product of C22⋊C4 and Dic5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22⋊C4×Dic5, C24.43D10, (C2×C10)⋊4C42, C10.70(C4×D4), C2.1(D4×Dic5), C23.D513C4, C221(C4×Dic5), C23.48(C4×D5), C22.93(D4×D5), C10.39(C2×C42), (C2×Dic5).278D4, (C22×Dic5)⋊10C4, (C22×C4).306D10, (C23×Dic5).1C2, C23.12(C2×Dic5), C2.4(Dic54D4), (C23×C10).24C22, C23.274(C22×D5), C10.10C4237C2, C10.42(C42⋊C2), C22.40(D42D5), (C22×C20).340C22, (C22×C10).316C23, C22.19(C22×Dic5), C2.4(C23.11D10), (C22×Dic5).205C22, C55(C4×C22⋊C4), (C2×C20)⋊33(C2×C4), C2.8(C2×C4×Dic5), (C2×C4×Dic5)⋊20C2, (C2×C4)⋊6(C2×Dic5), C2.4(D5×C22⋊C4), (C5×C22⋊C4)⋊15C4, C22.54(C2×C4×D5), (C2×Dic5)⋊23(C2×C4), (C2×C10).313(C2×D4), C10.67(C2×C22⋊C4), (C2×C22⋊C4).19D5, (C2×C23.D5).3C2, (C10×C22⋊C4).22C2, (C2×C10).137(C4○D4), (C2×C10).203(C22×C4), (C22×C10).112(C2×C4), SmallGroup(320,568)

Series: Derived Chief Lower central Upper central

C1C10 — C22⋊C4×Dic5
C1C5C10C2×C10C22×C10C22×Dic5C23×Dic5 — C22⋊C4×Dic5
C5C10 — C22⋊C4×Dic5
C1C23C2×C22⋊C4

Generators and relations for C22⋊C4×Dic5
 G = < a,b,c,d,e | a2=b2=c4=d10=1, e2=d5, cac-1=ab=ba, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 734 in 258 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C22⋊C4, C22×C4, C22×C4, C24, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C4×C22⋊C4, C4×Dic5, C23.D5, C5×C22⋊C4, C22×Dic5, C22×Dic5, C22×Dic5, C22×C20, C23×C10, C10.10C42, C2×C4×Dic5, C2×C23.D5, C10×C22⋊C4, C23×Dic5, C22⋊C4×Dic5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C42, C22⋊C4, C22×C4, C2×D4, C4○D4, Dic5, D10, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C4×D5, C2×Dic5, C22×D5, C4×C22⋊C4, C4×Dic5, C2×C4×D5, D4×D5, D42D5, C22×Dic5, C23.11D10, D5×C22⋊C4, Dic54D4, C2×C4×Dic5, D4×Dic5, C22⋊C4×Dic5

Smallest permutation representation of C22⋊C4×Dic5
On 160 points
Generators in S160
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 149)(22 150)(23 141)(24 142)(25 143)(26 144)(27 145)(28 146)(29 147)(30 148)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 41)(38 42)(39 43)(40 44)(51 87)(52 88)(53 89)(54 90)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 77)(62 78)(63 79)(64 80)(65 71)(66 72)(67 73)(68 74)(69 75)(70 76)(91 107)(92 108)(93 109)(94 110)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)(111 122)(112 123)(113 124)(114 125)(115 126)(116 127)(117 128)(118 129)(119 130)(120 121)(131 159)(132 160)(133 151)(134 152)(135 153)(136 154)(137 155)(138 156)(139 157)(140 158)
(1 39)(2 40)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 48)(12 49)(13 50)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 133)(22 134)(23 135)(24 136)(25 137)(26 138)(27 139)(28 140)(29 131)(30 132)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(61 88)(62 89)(63 90)(64 81)(65 82)(66 83)(67 84)(68 85)(69 86)(70 87)(91 130)(92 121)(93 122)(94 123)(95 124)(96 125)(97 126)(98 127)(99 128)(100 129)(101 113)(102 114)(103 115)(104 116)(105 117)(106 118)(107 119)(108 120)(109 111)(110 112)(141 153)(142 154)(143 155)(144 156)(145 157)(146 158)(147 159)(148 160)(149 151)(150 152)
(1 68 11 54)(2 69 12 55)(3 70 13 56)(4 61 14 57)(5 62 15 58)(6 63 16 59)(7 64 17 60)(8 65 18 51)(9 66 19 52)(10 67 20 53)(21 122 156 116)(22 123 157 117)(23 124 158 118)(24 125 159 119)(25 126 160 120)(26 127 151 111)(27 128 152 112)(28 129 153 113)(29 130 154 114)(30 121 155 115)(31 87 50 71)(32 88 41 72)(33 89 42 73)(34 90 43 74)(35 81 44 75)(36 82 45 76)(37 83 46 77)(38 84 47 78)(39 85 48 79)(40 86 49 80)(91 142 102 131)(92 143 103 132)(93 144 104 133)(94 145 105 134)(95 146 106 135)(96 147 107 136)(97 148 108 137)(98 149 109 138)(99 150 110 139)(100 141 101 140)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104 6 109)(2 103 7 108)(3 102 8 107)(4 101 9 106)(5 110 10 105)(11 93 16 98)(12 92 17 97)(13 91 18 96)(14 100 19 95)(15 99 20 94)(21 90 26 85)(22 89 27 84)(23 88 28 83)(24 87 29 82)(25 86 30 81)(31 114 36 119)(32 113 37 118)(33 112 38 117)(34 111 39 116)(35 120 40 115)(41 129 46 124)(42 128 47 123)(43 127 48 122)(44 126 49 121)(45 125 50 130)(51 147 56 142)(52 146 57 141)(53 145 58 150)(54 144 59 149)(55 143 60 148)(61 140 66 135)(62 139 67 134)(63 138 68 133)(64 137 69 132)(65 136 70 131)(71 154 76 159)(72 153 77 158)(73 152 78 157)(74 151 79 156)(75 160 80 155)

G:=sub<Sym(160)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,149)(22,150)(23,141)(24,142)(25,143)(26,144)(27,145)(28,146)(29,147)(30,148)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,41)(38,42)(39,43)(40,44)(51,87)(52,88)(53,89)(54,90)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,77)(62,78)(63,79)(64,80)(65,71)(66,72)(67,73)(68,74)(69,75)(70,76)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,122)(112,123)(113,124)(114,125)(115,126)(116,127)(117,128)(118,129)(119,130)(120,121)(131,159)(132,160)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158), (1,39)(2,40)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,48)(12,49)(13,50)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,133)(22,134)(23,135)(24,136)(25,137)(26,138)(27,139)(28,140)(29,131)(30,132)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(61,88)(62,89)(63,90)(64,81)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(91,130)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,113)(102,114)(103,115)(104,116)(105,117)(106,118)(107,119)(108,120)(109,111)(110,112)(141,153)(142,154)(143,155)(144,156)(145,157)(146,158)(147,159)(148,160)(149,151)(150,152), (1,68,11,54)(2,69,12,55)(3,70,13,56)(4,61,14,57)(5,62,15,58)(6,63,16,59)(7,64,17,60)(8,65,18,51)(9,66,19,52)(10,67,20,53)(21,122,156,116)(22,123,157,117)(23,124,158,118)(24,125,159,119)(25,126,160,120)(26,127,151,111)(27,128,152,112)(28,129,153,113)(29,130,154,114)(30,121,155,115)(31,87,50,71)(32,88,41,72)(33,89,42,73)(34,90,43,74)(35,81,44,75)(36,82,45,76)(37,83,46,77)(38,84,47,78)(39,85,48,79)(40,86,49,80)(91,142,102,131)(92,143,103,132)(93,144,104,133)(94,145,105,134)(95,146,106,135)(96,147,107,136)(97,148,108,137)(98,149,109,138)(99,150,110,139)(100,141,101,140), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,6,109)(2,103,7,108)(3,102,8,107)(4,101,9,106)(5,110,10,105)(11,93,16,98)(12,92,17,97)(13,91,18,96)(14,100,19,95)(15,99,20,94)(21,90,26,85)(22,89,27,84)(23,88,28,83)(24,87,29,82)(25,86,30,81)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,129,46,124)(42,128,47,123)(43,127,48,122)(44,126,49,121)(45,125,50,130)(51,147,56,142)(52,146,57,141)(53,145,58,150)(54,144,59,149)(55,143,60,148)(61,140,66,135)(62,139,67,134)(63,138,68,133)(64,137,69,132)(65,136,70,131)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155)>;

G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,149)(22,150)(23,141)(24,142)(25,143)(26,144)(27,145)(28,146)(29,147)(30,148)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,41)(38,42)(39,43)(40,44)(51,87)(52,88)(53,89)(54,90)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,77)(62,78)(63,79)(64,80)(65,71)(66,72)(67,73)(68,74)(69,75)(70,76)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,122)(112,123)(113,124)(114,125)(115,126)(116,127)(117,128)(118,129)(119,130)(120,121)(131,159)(132,160)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158), (1,39)(2,40)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,48)(12,49)(13,50)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,133)(22,134)(23,135)(24,136)(25,137)(26,138)(27,139)(28,140)(29,131)(30,132)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(61,88)(62,89)(63,90)(64,81)(65,82)(66,83)(67,84)(68,85)(69,86)(70,87)(91,130)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,113)(102,114)(103,115)(104,116)(105,117)(106,118)(107,119)(108,120)(109,111)(110,112)(141,153)(142,154)(143,155)(144,156)(145,157)(146,158)(147,159)(148,160)(149,151)(150,152), (1,68,11,54)(2,69,12,55)(3,70,13,56)(4,61,14,57)(5,62,15,58)(6,63,16,59)(7,64,17,60)(8,65,18,51)(9,66,19,52)(10,67,20,53)(21,122,156,116)(22,123,157,117)(23,124,158,118)(24,125,159,119)(25,126,160,120)(26,127,151,111)(27,128,152,112)(28,129,153,113)(29,130,154,114)(30,121,155,115)(31,87,50,71)(32,88,41,72)(33,89,42,73)(34,90,43,74)(35,81,44,75)(36,82,45,76)(37,83,46,77)(38,84,47,78)(39,85,48,79)(40,86,49,80)(91,142,102,131)(92,143,103,132)(93,144,104,133)(94,145,105,134)(95,146,106,135)(96,147,107,136)(97,148,108,137)(98,149,109,138)(99,150,110,139)(100,141,101,140), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,6,109)(2,103,7,108)(3,102,8,107)(4,101,9,106)(5,110,10,105)(11,93,16,98)(12,92,17,97)(13,91,18,96)(14,100,19,95)(15,99,20,94)(21,90,26,85)(22,89,27,84)(23,88,28,83)(24,87,29,82)(25,86,30,81)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,129,46,124)(42,128,47,123)(43,127,48,122)(44,126,49,121)(45,125,50,130)(51,147,56,142)(52,146,57,141)(53,145,58,150)(54,144,59,149)(55,143,60,148)(61,140,66,135)(62,139,67,134)(63,138,68,133)(64,137,69,132)(65,136,70,131)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155) );

G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,149),(22,150),(23,141),(24,142),(25,143),(26,144),(27,145),(28,146),(29,147),(30,148),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,41),(38,42),(39,43),(40,44),(51,87),(52,88),(53,89),(54,90),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,77),(62,78),(63,79),(64,80),(65,71),(66,72),(67,73),(68,74),(69,75),(70,76),(91,107),(92,108),(93,109),(94,110),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106),(111,122),(112,123),(113,124),(114,125),(115,126),(116,127),(117,128),(118,129),(119,130),(120,121),(131,159),(132,160),(133,151),(134,152),(135,153),(136,154),(137,155),(138,156),(139,157),(140,158)], [(1,39),(2,40),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,48),(12,49),(13,50),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,133),(22,134),(23,135),(24,136),(25,137),(26,138),(27,139),(28,140),(29,131),(30,132),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(61,88),(62,89),(63,90),(64,81),(65,82),(66,83),(67,84),(68,85),(69,86),(70,87),(91,130),(92,121),(93,122),(94,123),(95,124),(96,125),(97,126),(98,127),(99,128),(100,129),(101,113),(102,114),(103,115),(104,116),(105,117),(106,118),(107,119),(108,120),(109,111),(110,112),(141,153),(142,154),(143,155),(144,156),(145,157),(146,158),(147,159),(148,160),(149,151),(150,152)], [(1,68,11,54),(2,69,12,55),(3,70,13,56),(4,61,14,57),(5,62,15,58),(6,63,16,59),(7,64,17,60),(8,65,18,51),(9,66,19,52),(10,67,20,53),(21,122,156,116),(22,123,157,117),(23,124,158,118),(24,125,159,119),(25,126,160,120),(26,127,151,111),(27,128,152,112),(28,129,153,113),(29,130,154,114),(30,121,155,115),(31,87,50,71),(32,88,41,72),(33,89,42,73),(34,90,43,74),(35,81,44,75),(36,82,45,76),(37,83,46,77),(38,84,47,78),(39,85,48,79),(40,86,49,80),(91,142,102,131),(92,143,103,132),(93,144,104,133),(94,145,105,134),(95,146,106,135),(96,147,107,136),(97,148,108,137),(98,149,109,138),(99,150,110,139),(100,141,101,140)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104,6,109),(2,103,7,108),(3,102,8,107),(4,101,9,106),(5,110,10,105),(11,93,16,98),(12,92,17,97),(13,91,18,96),(14,100,19,95),(15,99,20,94),(21,90,26,85),(22,89,27,84),(23,88,28,83),(24,87,29,82),(25,86,30,81),(31,114,36,119),(32,113,37,118),(33,112,38,117),(34,111,39,116),(35,120,40,115),(41,129,46,124),(42,128,47,123),(43,127,48,122),(44,126,49,121),(45,125,50,130),(51,147,56,142),(52,146,57,141),(53,145,58,150),(54,144,59,149),(55,143,60,148),(61,140,66,135),(62,139,67,134),(63,138,68,133),(64,137,69,132),(65,136,70,131),(71,154,76,159),(72,153,77,158),(73,152,78,157),(74,151,79,156),(75,160,80,155)]])

80 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P4Q···4AB5A5B10A···10N10O···10V20A···20P
order12···222224···44···44···45510···1010···1020···20
size11···122222···25···510···10222···24···44···4

80 irreducible representations

dim111111111222222244
type++++++++-+++-
imageC1C2C2C2C2C2C4C4C4D4D5C4○D4Dic5D10D10C4×D5D4×D5D42D5
kernelC22⋊C4×Dic5C10.10C42C2×C4×Dic5C2×C23.D5C10×C22⋊C4C23×Dic5C23.D5C5×C22⋊C4C22×Dic5C2×Dic5C2×C22⋊C4C2×C10C22⋊C4C22×C4C24C23C22C22
# reps1221118884248421644

Matrix representation of C22⋊C4×Dic5 in GL5(𝔽41)

400000
01000
004000
000400
000040
,
10000
040000
004000
00010
00001
,
90000
00100
040000
00090
00009
,
400000
040000
004000
0003536
0004040
,
320000
032000
003200
0003937
000112

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[9,0,0,0,0,0,0,40,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,9],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,35,40,0,0,0,36,40],[32,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,39,11,0,0,0,37,2] >;

C22⋊C4×Dic5 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times {\rm Dic}_5
% in TeX

G:=Group("C2^2:C4xDic5");
// GroupNames label

G:=SmallGroup(320,568);
// by ID

G=gap.SmallGroup(320,568);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,387,100,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^10=1,e^2=d^5,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽